Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1715405

ABSTRACT

The abnormal accumulation of methylglyoxal (MG) leading to increased glycation of protein and DNA has emerged as an important metabolic stress, dicarbonyl stress, linked to aging, and disease. Increased MG glycation produces inactivation and misfolding of proteins, cell dysfunction, activation of the unfolded protein response, and related low-grade inflammation. Glycation of DNA and the spliceosome contribute to an antiproliferative and apoptotic response of high, cytotoxic levels of MG. Glyoxalase 1 (Glo1) of the glyoxalase system has a major role in the metabolism of MG. Small molecule inducers of Glo1, Glo1 inducers, have been developed to alleviate dicarbonyl stress as a prospective treatment for the prevention and early-stage reversal of type 2 diabetes and prevention of vascular complications of diabetes. The first clinical trial with the Glo1 inducer, trans-resveratrol and hesperetin combination (tRES-HESP)-a randomized, double-blind, placebo-controlled crossover phase 2A study for correction of insulin resistance in overweight and obese subjects, was completed successfully. tRES-HESP corrected insulin resistance, improved dysglycemia, and low-grade inflammation. Cell permeable Glo1 inhibitor prodrugs have been developed to induce severe dicarbonyl stress as a prospective treatment for cancer-particularly for high Glo1 expressing-related multidrug-resistant tumors. The prototype Glo1 inhibitor is prodrug S-p-bromobenzylglutathione cyclopentyl diester (BBGD). It has antitumor activity in vitro and in tumor-bearing mice in vivo. In the National Cancer Institute human tumor cell line screen, BBGD was most active against the glioblastoma SNB-19 cell line. Recently, potent antitumor activity was found in glioblastoma multiforme tumor-bearing mice. High Glo1 expression is a negative survival factor in chemotherapy of breast cancer where adjunct therapy with a Glo1 inhibitor may improve treatment outcomes. BBGD has not yet been evaluated clinically. Glycation by MG now appears to be a pathogenic process that may be pharmacologically manipulated for therapeutic outcomes of potentially important clinical impact.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glutathione/analogs & derivatives , Hesperidin/therapeutic use , Lactoylglutathione Lyase/metabolism , Neoplasms, Experimental/drug therapy , Resveratrol/therapeutic use , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Drug Therapy, Combination , Enzyme Induction/drug effects , Glutathione/chemistry , Glutathione/therapeutic use , Glycosylation/drug effects , Hesperidin/chemistry , Humans , Insulin Resistance/physiology , Lactoylglutathione Lyase/antagonists & inhibitors , Mice , Molecular Structure , Neoplasms, Experimental/metabolism , Obesity/drug therapy , Obesity/metabolism , Obesity/physiopathology , Pyruvaldehyde/chemistry , Pyruvaldehyde/metabolism , Resveratrol/chemistry
2.
Eur Rev Med Pharmacol Sci ; 26(2): 715-721, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1675570

ABSTRACT

OBJECTIVE: As N-acetylcysteine (NAC) is promising as a re-purposed drug for the adjunctive or supportive treatment of serious COVID-19, this article aimed to describe current evidence. MATERIALS AND METHODS: A search was performed in PubMed/Medline for "NAC", "viral Infection", COVID-19", oxidative stress", "inflammation", retrieving preclinical and clinical studies. RESULTS: NAC is a pleiotropic molecule with a dual antioxidant mechanism; it may neutralize free radicals and acts as a donor of cysteine, restoring the physiological pool of GSH. Serious COVID-19 patients have increased levels of reactive oxygen species (ROS) and free radicals and often present with glutathione depletion, which prompts a cytokine storm. NAC, which acts as a precursor of GSH inside cells, has been currently used in many conditions to restore or protect against GSH depletion and has a wide safety margin. In addition, NAC has anti-inflammatory activity independently of its antioxidant activity. CONCLUSIONS: Clinical and experimental data suggest that NAC may act on the mechanisms leading to the prothrombotic state observed in severe COVID-19.


Subject(s)
Acetylcysteine/therapeutic use , COVID-19 Drug Treatment , Acetylcysteine/chemistry , Antioxidants/chemistry , COVID-19/metabolism , COVID-19/virology , Glutathione/chemistry , Glutathione/metabolism , Humans , Oxidative Stress , Randomized Controlled Trials as Topic , Reactive Oxygen Species/metabolism , SARS-CoV-2/isolation & purification , Virus Diseases/drug therapy , Virus Diseases/metabolism
3.
mBio ; 12(4): e0209421, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1360546

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for coronavirus disease 2019 (COVID-19), encodes two proteases required for replication. The main protease (Mpro), encoded as part of two polyproteins, pp1a and pp1ab, is responsible for 11 different cleavages of these viral polyproteins to produce mature proteins required for viral replication. Mpro is therefore an attractive target for therapeutic interventions. Certain proteins in cells under oxidative stress undergo modification of reactive cysteines. We show Mpro is susceptible to glutathionylation, leading to inhibition of dimerization and activity. Activity of glutathionylated Mpro could be restored with reducing agents or glutaredoxin. Analytical studies demonstrated that glutathionylated Mpro primarily exists as a monomer and that modification of a single cysteine with glutathione is sufficient to block dimerization and inhibit its activity. Gel filtration studies as well as analytical ultracentrifugation confirmed that glutathionylated Mpro exists as a monomer. Tryptic and chymotryptic digestions of Mpro as well as experiments using a C300S Mpro mutant revealed that Cys300, which is located at the dimer interface, is a primary target of glutathionylation. Moreover, Cys300 is required for inhibition of activity upon Mpro glutathionylation. These findings indicate that Mpro dimerization and activity can be regulated through reversible glutathionylation of a non-active site cysteine, Cys300, which itself is not required for Mpro activity, and provides a novel target for the development of agents to block Mpro dimerization and activity. This feature of Mpro may have relevance to the pathophysiology of SARS-CoV-2 and related bat coronaviruses. IMPORTANCE SARS-CoV-2 is responsible for the devastating COVID-19 pandemic. Therefore, it is imperative that we learn as much as we can about the biochemistry of the coronavirus proteins to inform development of therapy. One attractive target is the main protease (Mpro), a dimeric enzyme necessary for viral replication. Most work thus far developing Mpro inhibitors has focused on the active site. Our work has revealed a regulatory mechanism for Mpro activity through glutathionylation of a cysteine (Cys300) at the dimer interface, which can occur in cells under oxidative stress. Cys300 glutathionylation inhibits Mpro activity by blocking its dimerization. This provides a novel accessible and reactive target for drug development. Moreover, this process may have implications for disease pathophysiology in humans and bats. It may be a mechanism by which SARS-CoV-2 has evolved to limit replication and avoid killing host bats when they are under oxidative stress during flight.


Subject(s)
Coronavirus 3C Proteases/metabolism , Cysteine/chemistry , Glutathione/chemistry , Protein Multimerization , SARS-CoV-2/metabolism , Animals , COVID-19/pathology , Chiroptera/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Dimerization , Glutaredoxins/metabolism , Humans , SARS-CoV-2/enzymology
4.
ACS Appl Mater Interfaces ; 13(11): 12912-12927, 2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-1185365

ABSTRACT

The current pandemic caused by SARS-CoV-2 has seen a widespread use of personal protective equipment, especially face masks. This has created the need to develop better and reusable protective masks with built-in antimicrobial, self-cleaning, and aerosol filtration properties to prevent the transmission of air-borne pathogens such as the coronaviruses. Herein, molybdenum disulfide (MoS2) nanosheets are used to prepare modified polycotton fabrics having excellent antibacterial activity and photothermal properties. Upon sunlight irradiation, the nanosheet-modified fabrics rapidly increased the surface temperature to ∼77 °C, making them ideal for sunlight-mediated self-disinfection. Complete self-disinfection of the nanosheet-modified fabric was achieved within 3 min of irradiation, making the fabrics favorably reusable upon self-disinfection. The nanosheet-modified fabrics maintained the antibacterial efficiency even after 60 washing cycles. Furthermore, the particle filtration efficiency of three-layered surgical masks was found to be significantly improved through incorporation of the MoS2-modified fabric as an additional layer of protective clothing, without compromising the breathability of the masks. The repurposed surgical masks could filter out around 97% of 200 nm particles and 96% of 100 nm particles, thus making them potentially useful for preventing the spread of coronaviruses (120 nm) by trapping them along with antibacterial protection against other airborne pathogens.


Subject(s)
Anti-Infective Agents/chemistry , Disulfides/chemistry , Molybdenum/chemistry , Nanostructures/chemistry , Personal Protective Equipment , Recycling , Anti-Infective Agents/pharmacology , COVID-19/prevention & control , COVID-19/virology , Escherichia coli/drug effects , Escherichia coli/metabolism , Glutathione/chemistry , Humans , Nanostructures/toxicity , Oxidation-Reduction , Particle Size , Reactive Oxygen Species/metabolism , SARS-CoV-2/isolation & purification , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Sunlight , Temperature
5.
Am J Cardiovasc Drugs ; 21(6): 589-593, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1144418

ABSTRACT

The purpose of this current opinion article is to illustrate a novel approach to the treatment of acute decompensated heart failure (ADHF) in coronavirus disease 2019 (COVID-19) patients. The approach described herein relies on a reformulation of intravenous nitroglycerin in 5% glutathione, itself novel, and is felt to have the potential to not only improve the rate of resolution of ADHF, but also reduce the risk of complications of heart failure seen in patients with COVID-19.


Subject(s)
COVID-19/complications , Heart Failure/diagnosis , Heart Failure/etiology , Nitroglycerin/therapeutic use , Vasodilator Agents/therapeutic use , Administration, Intravenous , Drug Compounding , Glutathione/chemistry , Humans , Infusions, Intravenous , Nitroglycerin/chemistry , Vasodilator Agents/chemistry
6.
Clin Biochem ; 92: 71-76, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1141672

ABSTRACT

Owing to their ease of use, glucose meters are frequently used in research and medicine. However, little is known of whether other non-glucose molecules, besides vitamin C, interfere with glucometry. Therefore, we sought to determine whether other antioxidants might behave like vitamin C in causing falsely elevated blood glucose levels, potentially exposing patients to glycemic mismanagement by being administered harmful doses of glucose-lowering drugs. To determine whether various antioxidants can be detected by seven commercial glucose meters, human blood samples were spiked with various antioxidants ex vivo and their effect on the glucose results were assessed by Parkes error grid analysis. Several of the glucose meters demonstrated a positive bias in the glucose measurement of blood samples spiked with vitamin C, N-acetylcysteine, and glutathione. With the most interference-sensitive glucose meter, non-blood solutions of 1 mmol/L N-acetylcysteine, glutathione, cysteine, vitamin C, dihydrolipoate, and dithiothreitol mimicked the results seen on that glucose meter for 0.7, 1.0, 1.2, 2.6, 3.7 and 5.5 mmol/L glucose solutions, respectively. Glucose meter users should be alerted that some of these devices might produce spurious glucose results not only in patients on vitamin C therapy but also in those being administered other antioxidants. As discussed herein, the clinical relevance of the data is immediate in view of the current use of antioxidant therapies for disorders such as the metabolic syndrome, diabetes, cardiovascular diseases, and coronavirus disease 2019.


Subject(s)
Antioxidants/chemistry , Blood Glucose Self-Monitoring/instrumentation , Blood Glucose/analysis , Acetylcysteine/blood , Acetylcysteine/chemistry , Antioxidants/analysis , Antioxidants/metabolism , Ascorbic Acid/analysis , Ascorbic Acid/blood , Blood Glucose/chemistry , Blood Glucose Self-Monitoring/methods , Glutathione/blood , Glutathione/chemistry , Humans , Point-of-Care Systems
7.
ACS Appl Bio Mater ; 3(8): 4809-4819, 2020 08 17.
Article in English | MEDLINE | ID: covidwho-833523

ABSTRACT

Despite the good biocompatibility and antibacterial activity of zinc sulfide nanoparticles (ZnS NPs), whether they possess antiviral activity is still unclear. Here, GSH-modified ZnS NPs (GSH-ZnS NPs) were synthesized and their significant antiviral activity was demonstrated using the Arteriviridae family RNA virus, porcine reproductive and respiratory syndrome virus (PRRSV), as a model. Mechanistically, GSH-ZnS NPs were shown to reduce PRRSV-induced ROS production to prevent PRRSV multiplication, with no activating effect on the interferon (IFN) signal pathway, the first defense line against virus infection. Furthermore, isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis of GSH-ZnS NP-treated cells revealed the involvement of numerous crucial proteins in virus proliferation, with vitronectin (VTN) being confirmed as an efficient PRRSV antagonist here. Furthermore, GSH-ZnS NPs were found to have potent antiviral effects on the Herpesviridae family DNA virus, pseudorabies virus (PRV), the Coronaviridae family positive-sense RNA virus, porcine epidemic diarrhea virus (PEDV), and the Rhabdoviridae family negative-stranded RNA virus, vesicular stomatitis virus (VSV), indicating their broad-spectrum antiviral activity against viruses from different families with various genome types. Overall, GSH-ZnS NP is a prospective candidate for the development of antiviral nanomaterials and may serve as a model for investigation of potential host restriction factors in combination with proteomics.


Subject(s)
Antiviral Agents/pharmacology , Glutathione/chemistry , Nanoparticles/chemistry , Sulfides/chemistry , Viruses/drug effects , Zinc Compounds/chemistry , Animals , Cell Line , Chlorocebus aethiops , Microbial Sensitivity Tests , Reactive Oxygen Species/metabolism , Viruses/classification
8.
Chem Res Toxicol ; 33(10): 2668-2674, 2020 10 19.
Article in English | MEDLINE | ID: covidwho-745890

ABSTRACT

Inflammation is an immune response to protect against various types of infections. When unchecked, acute inflammation can be life-threatening, as seen with the current coronavirus pandemic. Strong oxidants, such as peroxynitrite produced by immune cells, are major mediators of the inflammation-associated pathogenesis. Cellular thiols play important roles in mitigating inflammation-associated macromolecular damage including DNA. Herein, we have demonstrated a role of glutathione (GSH) and other thiols in neutralizing the effect of peroxynitrite-mediated DNA damage through stable GSH-DNA adduct formation. Our observation supports the use of thiol supplements as a potential therapeutic strategy against severe COVID-19 cases and a Phase II (NCT04374461) open-label clinical trial launched in early May 2020 by the Memorial Sloan Kettering Cancer Center.


Subject(s)
DNA Adducts/drug effects , DNA/drug effects , Glutathione/pharmacology , Inflammation/physiopathology , Peroxynitrous Acid/adverse effects , Acute Disease , Animals , Betacoronavirus , COVID-19 , Cattle , Coronavirus Infections/drug therapy , DNA/chemistry , DNA Adducts/chemistry , DNA Damage , Glutathione/chemistry , HEK293 Cells , Humans , Mutagens/chemistry , Mutagens/pharmacology , Pandemics , Peroxynitrous Acid/chemistry , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Salmonella typhimurium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL